trisicell.tl.booster
- trisicell.tl.booster(df_input, alpha, beta, solver='SCITE', sample_on='muts', sample_size=10, n_samples=10, begin_index=0, n_jobs=10, dep_weight=50, time_limit=120, n_iterations=500000, subsample_dir=None, disable_tqdm=False, no_subsampling=False, no_dependencies=False, no_reconstruction=False)[source]
Trisicell-Boost solver.
For more details of available tools that work on binary matrices, read [ReviewBinary].
- Parameters
df_input (
pandas.DataFrame
) – input noisy dataframealpha (
float
) – false positive ratebeta (
float
) – false negative ratesolver (
str
, optional) – which tool is boosted {“SCITE”, “PhISCS”}, by default “SCITE”sample_on (
str
, optional) – on which dimension is subsampled {“muts”, “cells”}, by default “muts”sample_size (
int
, optional) – number of subsampled mutations or cells depends onsample_on
, by default 10n_samples (
int
, optional) – number of samples, by default 10begin_index (
int
, optional) – start index of intermediate file names, by default 0n_jobs (
int
, optional) – number of jobs, by default 10dep_weight (
int
, optional) – weight multiplier, by default 50time_limit (
int
, optional) – time out needed for PhISCS running on each instance, by default 120n_iterations (
int
, optional) – number of iterations needed for SCITE running, by default 500000subsample_dir (
str
, optional) – for keeping the intermediate subsamples CFMatrices, by default Nonedisable_tqdm (
bool
, optional) – disable progress bar, by default Falseno_subsampling (
bool
, optional) – subsampling (step 1/3) gets off, by default Falseno_dependencies (
bool
, optional) – dependencies calculation (step 2/3) gets off, by default Falseno_reconstruction (
bool
, optional) – reconstruction of big tree (step 3/3) gets off, by default False
- Returns
A conflict-free matrix in which rows are cells and columns are mutations. Values inside this matrix show the presence (1) and absence (0).
- Return type
See also
trisicell.tl.scite()
,trisicell.tl.phiscsb()